DSGE Model
消费者
效用最大化问题为
等价于
Lagrangian is
F.O.C
由
\frac{U_{O}}{U_{C}}=\frac{P_{O}}{P_{C}}=\frac{w_{t}}
\frac{C_{t}}{C_{t-1}}=\beta(1+r_{t}-\delta)
\frac{U_{C,t-1}}{U_{C,t}}=\beta(1+r_{t}-\delta)
\begin{split}
\max &\ E_{0}\sum_{t=0}^\infty \beta^t[\gamma \ln C_{t}+(1-\gamma)\ln(1-L_{t})] \
\text{s.t.} &\ C_{t}+K_{t+1}=w_{t}L_{t}+(1+r_{t}-\delta)K_{t}
\end
\begin{align}
V(K_{t})=&\max_{K_{t+1},L_{t}} \gamma\ln [w_{t}L_{t}+(1+r_{t}-\delta)K_{t}-K_{t+1}] \
&+(1-\gamma)\ln(1-L_{t})+\beta E_{t}V(K_{t+1})
\end
\begin{align}
\frac{\partial V_{t}}{\partial K_{t+1}}&=-\frac{\gamma}{w_{t}L_{t}+(1+r_{t}+\delta)K_{t}-K_{t+1}} +\beta E_{t}\frac{\partial V_{t+1}}{\partial K_{t+1}} =0 \
\frac{\partial V_{t}}{\partial L_{t}}&= \frac{\gamma w_{t}}{w_{t}L_{t}+(1+r_{t}+\delta)K_{t}-K_{t+1}}+\frac{1-\gamma}{1-L_{t}}=0
\end
\begin{align}
\frac{\partial V_{t}}{\partial K_{t}}&=\frac{\gamma(1+r_{t}-\delta)}{w_{t}L_{t}+(1+r_{t}+\delta)K_{t}-K_{t+1}} \implies \frac{\partial V_{t+1}}{\partial K_{t+1}} \
\end
\frac{C_{t+1}}{C_{t}}=\beta (1+r_{t+1}-\delta)
\frac{\frac{1-\gamma}{1-L_{t}}}{\frac{\gamma}{C_{t}}}=w_{t}\implies \frac{1-\gamma}{\gamma} \frac{C_{t}}{1-L_{t}}=w_
\begin{split}
\max &\ E_{0}\sum_{t=0}^\infty \left( \frac{1}{1+r_{t}} \right)
{ #t}
\Pi_{t} \
\text{s.t.} &\ \Pi_{t}=Y_{t}-w_{t}L_{t}-r_{t}K_{t} \
&\ Y_{t}=A_{t}K_{t}^\alpha L_{t}^{1-\alpha}
\end
\begin{split}
\max &\ \Pi_{t}=Y_{t}-w_{t}L_{t}-r_{t}K_{t} \
\text{s.t.} &\ Y_{t}=A_{t}K_{t}^\alpha L_{t}^{1-\alpha}
\end
\begin{align*}
\frac{\partial \Pi_{t}}{\partial K_{t}} &=\alpha A_{t}K_{t}^{\alpha-1}L_{t}^{1-\alpha }-r_{t}=0 \
\frac{\partial \Pi_{t}}{\partial L_{t}} &=(1-\alpha)A_{t}K_{t}^\alpha L_{t}^{-\alpha}-w_{t}=0
\end
\frac{r_{t}K_{t}}{w_{t}L_{t}}=\frac{\alpha}{1-\alpha}
\begin{align*}
r_{t}K_{t}&=\alpha Y_{t} \
w_{t}L_{t}&=(1-\alpha)Y_{t}
\end
\begin{align*}
\frac{1-\gamma}{\gamma} \frac{C_{t}}{1-L_{t}}&=w_{t} \tag{M1'}\
\frac{C_{t}}{C_{t-1}}&=\beta(1+r_{t}-\delta) \tag{M2'}\
\frac{r_{t}K_{t}}{w_{t}L_{t}}&=\frac{\alpha}{1-\alpha} \tag{M3'} \
Y_{t}&=w_{t}L_{t}+r_{t}K_{t} \tag{M4'}\
Y_{t}&=C_{t}+I_{t} \tag{M5'}\
Y_{t}&=A_{t}K_{t}^\alpha L_{t}^{1-\alpha} \tag{M6'}\
I_{t}&=K_{t+1}-(1-\delta)K_{t} \tag{M7'}
\end
\begin{align*}
\frac{1-\gamma}{\gamma} \frac{C_{t}}{1-L_{t}}&=w_{t} \tag{M1}\
\frac{C_{t}}{C_{t-1}}&=\beta(1+r_{t}-\delta) \tag{M2}\
r_{t}&=\alpha A_{t}K_{t}^{\alpha-1}L_{t}^{1-\alpha }=\frac{\alpha Y_{t}}{K_{t}} \tag{M3} \
w_{t}&=(1-\alpha)A_{t}K_{t}^\alpha L_{t}^{-\alpha}=\frac{(1-\alpha)Y_{t}}{L_{t}} \tag{M4}\
Y_{t}&=C_{t}+I_{t} \tag{M5}\
Y_{t}&=A_{t}K_{t}^\alpha L_{t}^{1-\alpha} \tag{M6}\
I_{t}&=K_{t+1}-(1-\delta)K_{t} \tag{M7}
\end
\begin{split}
\max &\ E_{0}\sum_{t=0}^\infty \beta^t U(C_{t},O_{t}) \
\text{s.t.} &\ U(C_{t},O_{t})=\gamma \log C_{t}+(1-\gamma)O_{t} \
&\ O_{t}+L_{t}\equiv 1\
&\ C_{t}+I_{t}=A_{t}K_{t}^\alpha L_{t}^{1-\alpha}\
&\ I_{t}=K_{t+1}-(1-\delta)K_{t}
\end
\begin{align*}
\frac{1-\gamma}{\gamma} \frac{C_{t}}{1-L_{t}}&=(1-\alpha)A_{t}K_{t}^\alpha L_{t}^{-\alpha} \tag{P1}\
\frac{C_{t}}{C_{t-1}}&=\beta(1+\alpha A_{t}K_{t}^{\alpha-1}L_{t}^{1-\alpha }-\delta) \tag{P2}\
Y_{t}&=C_{t}+I_{t} \tag{P3}\
Y_{t}&=A_{t}K_{t}^\alpha L_{t}^{1-\alpha} \tag{P4}\
I_{t}&=K_{t+1}-(1-\delta)K_{t} \tag{P5}
\end
\begin{align*}
\frac{1-\gamma}{\gamma} \frac{\bar{C}}{1-\bar{L}}&=\bar{w} \tag{sM1}\
1&=\beta(1+\bar{r}-\delta) \tag{sM2}\
\bar{r}&=\alpha \bar{A}\bar{K}^{\alpha-1}\bar{L}^{1-\alpha }=\frac{\alpha \bar{Y}}{\bar{K}} \tag{sM3} \
\bar{w}&=(1-\alpha)\bar{A}\bar{K}^\alpha \bar{L}^{-\alpha}=\frac{(1-\alpha)\bar{Y}}{\bar{L}} \tag{sM4}\
\bar{Y}&=\bar{C}+\bar{I} \tag{sM5}\
\bar{Y}&=\bar{A}\bar{K}^\alpha \bar{L}^{1-\alpha} \tag{sM6}\
\bar{I}&=\bar{K}-(1-\delta)\bar{K}\implies \bar{I}=\delta \bar{K} \tag{sM7}
\end
\begin{align*}
\frac{1-\gamma}{\gamma} \frac{\bar{C}}{1-\bar{L}}&=(1-\alpha)\bar{A}\bar{K}^\alpha \bar{L}^{-\alpha} \tag{sP1}\
1&=\beta(1+\alpha \bar{A}\bar{K}^{\alpha-1}\bar{L}^{1-\alpha }-\delta) \tag{sP2}\
\bar{Y}&=\bar{C}+\bar{I} \tag{sP3}\
\bar{Y}&=\bar{A}\bar{K}^\alpha \bar{L}^{1-\alpha} \tag{sP4}\
\bar{I}&=\delta \bar{K} \tag{sP5}
\end
\begin{align*}
\frac{1-\gamma}{\gamma}\frac{\bar{C}}{1-\bar{L}}&=(1-\alpha) \frac{\bar{Y}}{\bar{L}}\tag{1}\
1&=\beta\left( 1+\alpha \frac{\bar{Y}}{\bar{K}}-\delta \right)\tag{2}\
\bar{Y}&=\bar{C}+\delta \bar{K}\tag{3}
\end
\bar{K}=\frac{\alpha\beta}{1+\beta\delta-\beta}\bar{Y}\tag
\bar{C}=\frac{1+(1-\alpha)\beta\delta-\beta}{1+\beta\delta-\beta}\bar{Y}\tag
\bar{L}=\frac{\gamma(1-\alpha)(1+\beta\delta-\beta)}{(1-\gamma)[1+(1-\alpha)\beta\delta-\beta]+\gamma(1-\alpha)(1+\beta\delta-\beta)}\bar{Y}\tag
\begin{align*}
\bar{r}&=\frac{1}{\beta}+\delta-1\
\bar{w}&=\frac{(1-\gamma)[1+(1-\alpha)\beta\delta-\beta]}{\gamma(1+\beta\delta-\beta)}+(1-\alpha)
\end
\ln A_{t}=(1-\rho_{A})\ln \bar{A}+\rho_{A}\ln A_{t-1}+\varepsilon_{t}^A\ ,\varepsilon_{t}^A\sim N(0,\sigma_{A}^{2})
\begin{align*}
\bar{Y}(1+\hat{y}{t})&=\bar{C}(1+\hat{c})+\bar{I}(1+\hat{i}{t})\
\hat{y}&=\frac{\bar{C}}{\bar{Y}}\hat{c}{t}+\frac{\delta \bar{K}}{\bar{Y}}\hat{i}\
\hat{y}{t}&=\frac{1+(1-\alpha)\beta\delta-\beta}{1+\beta\delta-\beta}\hat{c}+\frac{\alpha\beta\delta}{1+\beta\delta-\beta}\hat{i}{t}\
(1+\beta\delta-\beta)\hat{y}&=[1+(1-\alpha)\beta\delta-\beta]\hat{c}{t}+\alpha\beta\delta \hat{i}
\end
\begin{align*}
\bar{Y}(1+\hat{y}{t})&=\bar{A}\bar{K}^\alpha \bar{L}^{1-\alpha}(1+\hat{a}+\alpha \hat{k}{t}+(1-\alpha)\hat{l})\
\hat{y}{t}&=1+\hat{a}+\alpha \hat{k}{t}+(1-\alpha)\hat{l}
\end