DSGE Model

消费者

效用最大化问题为

max t=0βtU(Ct,Ot)s.t. U(Ct,Ot)=γlnCt+ln(1γ)Ot Ot+Lt1 Ct+It=wtLt+rtKt It=Kt+1(1δ)Kt

等价于

max t=0βt[γlnCt+(1γ)ln(1Lt)]s.t. Ct+Kt+1=wtLt+(1+rtδ)Kt

Lagrangian is

L=t=0βt{[γlnCt+(1γ)ln(1Lt)]+λt[wtLt+(1+rtδ)KtCtKt+1]}

F.O.C

(1)LCt=βt[γCtλt]=0(2)LLt=βt[1γ1Lt+λtwt]=0(3)LKt=βtλt(1+rtδ)+βt1λt1(1)=0

(1)(2) 可得

1γ1LtγCt=wt1γγCt1Lt=wt$$whichinfactisin[[01/]]

\frac{U_{O}}{U_{C}}=\frac{P_{O}}{P_{C}}=\frac{w_{t}}

$(1)$$(3)$$λ$

\frac{C_{t}}{C_{t-1}}=\beta(1+r_{t}-\delta)

whichexactlyin[[01/]]

\frac{U_{C,t-1}}{U_{C,t}}=\beta(1+r_{t}-\delta)

### 试试 Bellman Equation

\begin{split}
\max &\ E_{0}\sum_{t=0}^\infty \beta^t[\gamma \ln C_{t}+(1-\gamma)\ln(1-L_{t})] \
\text{s.t.} &\ C_{t}+K_{t+1}=w_{t}L_{t}+(1+r_{t}-\delta)K_{t}
\end

BellmanEquation

\begin{align}
V(K_{t})=&\max_{K_{t+1},L_{t}} \gamma\ln [w_{t}L_{t}+(1+r_{t}-\delta)K_{t}-K_{t+1}] \
&+(1-\gamma)\ln(1-L_{t})+\beta E_{t}V(K_{t+1})
\end

F.O.C.

\begin{align}
\frac{\partial V_{t}}{\partial K_{t+1}}&=-\frac{\gamma}{w_{t}L_{t}+(1+r_{t}+\delta)K_{t}-K_{t+1}} +\beta E_{t}\frac{\partial V_{t+1}}{\partial K_{t+1}} =0 \
\frac{\partial V_{t}}{\partial L_{t}}&= \frac{\gamma w_{t}}{w_{t}L_{t}+(1+r_{t}+\delta)K_{t}-K_{t+1}}+\frac{1-\gamma}{1-L_{t}}=0
\end

\begin{align}
\frac{\partial V_{t}}{\partial K_{t}}&=\frac{\gamma(1+r_{t}-\delta)}{w_{t}L_{t}+(1+r_{t}+\delta)K_{t}-K_{t+1}} \implies \frac{\partial V_{t+1}}{\partial K_{t+1}} \
\end

F.O.C.

\frac{C_{t+1}}{C_{t}}=\beta (1+r_{t+1}-\delta)

\frac{\frac{1-\gamma}{1-L_{t}}}{\frac{\gamma}{C_{t}}}=w_{t}\implies \frac{1-\gamma}{\gamma} \frac{C_{t}}{1-L_{t}}=w_

和拉格朗日乘数法得到的结果完全一致。 ## 厂商 由于消费 $C_{t}$ 被看作唯一商品,相当于假设 $P_{t}\equiv 1$ 利润最大化问题为

\begin{split}
\max &\ E_{0}\sum_{t=0}^\infty \left( \frac{1}{1+r_{t}} \right)
{ #t}
\Pi_{t} \
\text{s.t.} &\ \Pi_{t}=Y_{t}-w_{t}L_{t}-r_{t}K_{t} \
&\ Y_{t}=A_{t}K_{t}^\alpha L_{t}^{1-\alpha}
\end

$rt$

\begin{split}
\max &\ \Pi_{t}=Y_{t}-w_{t}L_{t}-r_{t}K_{t} \
\text{s.t.} &\ Y_{t}=A_{t}K_{t}^\alpha L_{t}^{1-\alpha}
\end

F.O.C

\begin{align*}
\frac{\partial \Pi_{t}}{\partial K_{t}} &=\alpha A_{t}K_{t}^{\alpha-1}L_{t}^{1-\alpha }-r_{t}=0 \
\frac{\partial \Pi_{t}}{\partial L_{t}} &=(1-\alpha)A_{t}K_{t}^\alpha L_{t}^{-\alpha}-w_{t}=0
\end

which implies(Cobb-Douglas函数#利润最大化的性质)

\frac{r_{t}K_{t}}{w_{t}L_{t}}=\frac{\alpha}{1-\alpha}

and[[01//CRSCRS]]

\begin{align*}
r_{t}K_{t}&=\alpha Y_{t} \
w_{t}L_{t}&=(1-\alpha)Y_{t}
\end

## 市场经济一般均衡模型 市场经济由七个变量序列刻画:$\{C_{t},I_{t},K_{t},L_{t},r_{t},w_{t},Y_{t}\}_{t=0}^\infty$ 市场经济一般均衡为:

\begin{align*}
\frac{1-\gamma}{\gamma} \frac{C_{t}}{1-L_{t}}&=w_{t} \tag{M1'}\
\frac{C_{t}}{C_{t-1}}&=\beta(1+r_{t}-\delta) \tag{M2'}\
\frac{r_{t}K_{t}}{w_{t}L_{t}}&=\frac{\alpha}{1-\alpha} \tag{M3'} \
Y_{t}&=w_{t}L_{t}+r_{t}K_{t} \tag{M4'}\
Y_{t}&=C_{t}+I_{t} \tag{M5'}\
Y_{t}&=A_{t}K_{t}^\alpha L_{t}^{1-\alpha} \tag{M6'}\
I_{t}&=K_{t+1}-(1-\delta)K_{t} \tag{M7'}
\end

$(M1)(M2)$$(M3)$$(M4)(M5)(M6)$$(M7)$便$rt,wt$$(M3)(M4)$$(M3)(M4)$

\begin{align*}
\frac{1-\gamma}{\gamma} \frac{C_{t}}{1-L_{t}}&=w_{t} \tag{M1}\
\frac{C_{t}}{C_{t-1}}&=\beta(1+r_{t}-\delta) \tag{M2}\
r_{t}&=\alpha A_{t}K_{t}^{\alpha-1}L_{t}^{1-\alpha }=\frac{\alpha Y_{t}}{K_{t}} \tag{M3} \
w_{t}&=(1-\alpha)A_{t}K_{t}^\alpha L_{t}^{-\alpha}=\frac{(1-\alpha)Y_{t}}{L_{t}} \tag{M4}\
Y_{t}&=C_{t}+I_{t} \tag{M5}\
Y_{t}&=A_{t}K_{t}^\alpha L_{t}^{1-\alpha} \tag{M6}\
I_{t}&=K_{t+1}-(1-\delta)K_{t} \tag{M7}
\end

## 计划经济一般均衡模型 将居民效用最大化和厂商利润最大化问题统一,合并为善良独裁者对居民效用最大化的决策问题。换言之,略去厂商利润最大化,将居民效用最大化的“支出=收入” 条件变为“支出=产出”条件,市场分配变为计划分配,价格机制消失。 The problem is

\begin{split}
\max &\ E_{0}\sum_{t=0}^\infty \beta^t U(C_{t},O_{t}) \
\text{s.t.} &\ U(C_{t},O_{t})=\gamma \log C_{t}+(1-\gamma)O_{t} \
&\ O_{t}+L_{t}\equiv 1\
&\ C_{t}+I_{t}=A_{t}K_{t}^\alpha L_{t}^{1-\alpha}\
&\ I_{t}=K_{t+1}-(1-\delta)K_{t}
\end

${Ct,It,Kt,Lt,Yt}t=0$

\begin{align*}
\frac{1-\gamma}{\gamma} \frac{C_{t}}{1-L_{t}}&=(1-\alpha)A_{t}K_{t}^\alpha L_{t}^{-\alpha} \tag{P1}\
\frac{C_{t}}{C_{t-1}}&=\beta(1+\alpha A_{t}K_{t}^{\alpha-1}L_{t}^{1-\alpha }-\delta) \tag{P2}\
Y_{t}&=C_{t}+I_{t} \tag{P3}\
Y_{t}&=A_{t}K_{t}^\alpha L_{t}^{1-\alpha} \tag{P4}\
I_{t}&=K_{t+1}-(1-\delta)K_{t} \tag{P5}
\end

## 市场经济均衡的稳态

\begin{align*}
\frac{1-\gamma}{\gamma} \frac{\bar{C}}{1-\bar{L}}&=\bar{w} \tag{sM1}\
1&=\beta(1+\bar{r}-\delta) \tag{sM2}\
\bar{r}&=\alpha \bar{A}\bar{K}^{\alpha-1}\bar{L}^{1-\alpha }=\frac{\alpha \bar{Y}}{\bar{K}} \tag{sM3} \
\bar{w}&=(1-\alpha)\bar{A}\bar{K}^\alpha \bar{L}^{-\alpha}=\frac{(1-\alpha)\bar{Y}}{\bar{L}} \tag{sM4}\
\bar{Y}&=\bar{C}+\bar{I} \tag{sM5}\
\bar{Y}&=\bar{A}\bar{K}^\alpha \bar{L}^{1-\alpha} \tag{sM6}\
\bar{I}&=\bar{K}-(1-\delta)\bar{K}\implies \bar{I}=\delta \bar{K} \tag{sM7}
\end

## 中央计划均衡的稳态

\begin{align*}
\frac{1-\gamma}{\gamma} \frac{\bar{C}}{1-\bar{L}}&=(1-\alpha)\bar{A}\bar{K}^\alpha \bar{L}^{-\alpha} \tag{sP1}\
1&=\beta(1+\alpha \bar{A}\bar{K}^{\alpha-1}\bar{L}^{1-\alpha }-\delta) \tag{sP2}\
\bar{Y}&=\bar{C}+\bar{I} \tag{sP3}\
\bar{Y}&=\bar{A}\bar{K}^\alpha \bar{L}^{1-\alpha} \tag{sP4}\
\bar{I}&=\delta \bar{K} \tag{sP5}
\end

## 求解稳态 在 $sM$ 中消去价格得到 $sP$,进一步消去 $(sP 4)(sP 5)$ 得到

\begin{align*}
\frac{1-\gamma}{\gamma}\frac{\bar{C}}{1-\bar{L}}&=(1-\alpha) \frac{\bar{Y}}{\bar{L}}\tag{1}\
1&=\beta\left( 1+\alpha \frac{\bar{Y}}{\bar{K}}-\delta \right)\tag{2}\
\bar{Y}&=\bar{C}+\delta \bar{K}\tag{3}
\end

$(2)$

\bar{K}=\frac{\alpha\beta}{1+\beta\delta-\beta}\bar{Y}\tag

$(3)(4)$

\bar{C}=\frac{1+(1-\alpha)\beta\delta-\beta}{1+\beta\delta-\beta}\bar{Y}\tag

$(1)(5)$

\bar{L}=\frac{\gamma(1-\alpha)(1+\beta\delta-\beta)}{(1-\gamma)[1+(1-\alpha)\beta\delta-\beta]+\gamma(1-\alpha)(1+\beta\delta-\beta)}\bar{Y}\tag

$(4)(6)$$(sM3)(sM4)$

\begin{align*}
\bar{r}&=\frac{1}{\beta}+\delta-1\
\bar{w}&=\frac{(1-\gamma)[1+(1-\alpha)\beta\delta-\beta]}{\gamma(1+\beta\delta-\beta)}+(1-\alpha)
\end

还有最复杂的 $\bar{Y}$ 以及最容易的 $\bar{I}$ ## 对数线性化 定义:$\hat{u}_{t}\equiv\ln u_{t}-\ln \bar{u}\implies u_{t}=\bar{u}e^{\hat{u}_{t}}\approx \bar{u}(1+\hat{u}_{t})$ 假设: - $u_{t}z_{t}\approx 0$ - $u_{t}^a\approx \bar{u}^a(1+\hat{u}_{t})^a\approx \bar{u}^a(1+a\hat{u}_{t})$ 此外假设

\ln A_{t}=(1-\rho_{A})\ln \bar{A}+\rho_{A}\ln A_{t-1}+\varepsilon_{t}^A\ ,\varepsilon_{t}^A\sim N(0,\sigma_{A}^{2})

using$(M1)$using$(M5)$

\begin{align*}
\bar{Y}(1+\hat{y}{t})&=\bar{C}(1+\hat{c})+\bar{I}(1+\hat{i}{t})\
\hat{y}
&=\frac{\bar{C}}{\bar{Y}}\hat{c}{t}+\frac{\delta \bar{K}}{\bar{Y}}\hat{i}\
\hat{y}{t}&=\frac{1+(1-\alpha)\beta\delta-\beta}{1+\beta\delta-\beta}\hat{c}+\frac{\alpha\beta\delta}{1+\beta\delta-\beta}\hat{i}{t}\
(1+\beta\delta-\beta)\hat{y}
&=[1+(1-\alpha)\beta\delta-\beta]\hat{c}{t}+\alpha\beta\delta \hat{i}
\end

using$(M6)$

\begin{align*}
\bar{Y}(1+\hat{y}{t})&=\bar{A}\bar{K}^\alpha \bar{L}^{1-\alpha}(1+\hat{a}+\alpha \hat{k}{t}+(1-\alpha)\hat{l})\
\hat{y}{t}&=1+\hat{a}+\alpha \hat{k}{t}+(1-\alpha)\hat{l}
\end